Matts-Åke Belin PhD Director Vision Zero Academy Adj. Professor Royal Institute of Technology (KTH)

matts-ake.belin@trafikverket.se











# Vision Zero - a Swedish contribution to the global community

In October 1997, Vision Zero was passed by a large majority in the Swedish parliament.

The Vision is an expression of the ethical imperative that It can never be ethically acceptable that people are killed or seriously injured when moving within the transport system





#### Vision Zero a policy innovation





#### **Probability of Pedestrian Fatality by Impact Speed**

Figure 2: Probability of Pedestrian Fatality by Impact Speed.

Derived from the Interdisciplinary Working Group for Accident Mechanics (1986) and Walz, Hoefliger and Fehlmann (1983)











#### Urban safety











#### Rural safety





#### **Rural Safety**













Vision Zero, Safe System, Road to Zero....
"We Have Many Names for the Things We Love!"





















# VISION ZERO ACADEMY

STRIVING
FOR EXCELLENCE IN
TRANSPORT
SAFETY



Model for safe traffic Matteo Rizzi, STA



#### Vision Zero





Lucius Annaeus Seneca

- Humans have biomechanical limits
- Nobody is perfect we all make errors or mistakes sometimes
- All crashes should be survivable
- The road transport system needs to absorb such errors/mistakes, and to handle the impact energy in an crash

#### Chain of events leading to a crash







#### Chain of events leading to a crash





#### Question:

what is the difference?





**Energy to handle in a crash** 







#### In simple words

The main goal is <u>not</u> to totally eliminate the number of crashes

 The main goal is to make sure that speed (energy) is <u>always</u> aligned with the ability to protect road users <u>when</u> a crash occurs

 The challenge is, we (humans) do not a very good perception of the dangers related to speed

















#### Speed is energy – and energy is the key factor

Design speed maximum speed to avoid serious injuries and fatalities

Posted speed speed limit

Operation speed actual driving speed

Design speed = posted speed = operation speed > SAFE SPEED

#### A tragic example

STA's in-depth studies of fatal crashes

- 90 km/h speed limit
- Road width 13 m

- AADT 5500
   Annual Average Daily Traffic
- Head-on collision between two passenger cars





#### Car nr 1, BMW 320 - model year 2007

5 stars EuroNCAP (2005)





#### Car nr 2, Volvo V70 - model year 2010

5 stars EuroNCAP (2007)





VERY IMPORTANT SIIDE



The posted speed limit is higher than the design speed







#### Speed is energy – and energy is the key factor

Design speed



Posted speed

maximum speed to avoid serious injuries and fatalities

speed limit

Operation speed actual driving speed

#### Speed is energy – and energy is the key factor

Design speed

maximum speed to avoid serious injuries and fatalities

Posted speed

speed limit

Operation speed

actual driving speed



#### Summary

- Humans have biomechanical limits
- Nobody is perfect we all make errors or mistakes sometimes
- The road transport system needs to absorb such errors/mistakes, and to handle the impact energy in an crash
- Speed is energy and energy is the key factor
- Safe speed can only be achieved with a combination of countermeasures that support and complete each other



# Vehicle safety and emerging technologies

Rikard Fredriksson
Senior Advisor, Swedish Transport Administration
Associate Professor, Chalmers University of Technology





### Vision Zero





© movingbeyondzero.com



## **EuroNCAP** partners 2020



### **Test labs**





### Development in crash safety



Kullgren et al 2019



### NCAP's around the world



# A Market for Safety



### **EuroNCAP** tests & assessment









































### EuroNCAP 2019

- 55 tested cars
  - 75% 5 stars
  - 16% 4 stars
  - 9% 3 stars





# **Market Coverage**



EU-28 passenger car and SUV sales, 2018. Total 15.3 million units.



### Correlation to Euro NCAP - injury risk for star bands



Kullgren et al 2019

# What is new 2020?





### **Far-side Crash Protection**





2020 Toyota Yaris with double center airbags



### **AEB Car-to-car**

Turn-across-path



2020

### **AEB Pedestrian**

turning



reversing



### Rescue sheet - 2020







### First two cars tested 2021



https://www.euroncap.com/en









AEB CYCLIST



### What is next?







# **Bicyclist**



# New pedestrian

#### **2023 Pedestrian Leg Impact Tests**



# **AEB Car-to-car Next Steps**

**Crossing traffic** 

Head-on





2023 2023

# **AEB Bicyclist**

door opening



### **Child Presence Detection 2023**

#### **Euro NCAP Child Presence Detection General Requirements**

#### **Initial Warning**



- Targets the driver
- Directly after locking <10s
- Visual and audible warning for ≥3s
- Temporary delay or cancellation

#### **Escalation Warning**

(direct sensing systems only)



- After initial warning, warn driver and others
- Repeats every 60s for 20 min period
- Vehicle and/or mobile phone warning

#### Intervention

(direct sensing systems only)



- Supersedes or replaces escalation warning, 10 min from locking
- Open to possibilities must actively reduce the threat of hyperthermia

#### In-Vehicle Heatstroke Fatalities in the US



#### Age of In-Vehicle Heatstroke Victims





### **AEB Powered Two-wheeler (motorcycle)**



# Virtual testing and Human Modelling



A paradigm shift ... enables

- large number of
  - crash speeds
  - occupant sizes
  - impact angles
- "real" (i.e. human) injury criteria
  - e.g. fracture or brain injury
  - (compared to acceleration and force in dummy)

© Elemance

# Virtual testing avoidance





# **Driver attention**











# **Occupant State Monitoring**

### **Impaired Driving**

Fatigue

Distraction

**Driving Under Influence** 

Sudden Sickness





# **Occupant State Monitoring**

5050



Indirect



5053





Indirect + Direct







Direct only

# Thanks! Questions?



rikard.fredriksson@trafikverket.se





# VISION ZERO ACADEMY

STRIVING FOR EXCELLENCE IN TRANSPORT SAFETY



Dr. Lars Ekman

Lars.Ekman @Trafikverket.se





### Identify the safe system







### the safe system









### Pedestrians crossing roads and streets



Separation















VISION ZERO













## Division of Responsibilities/ Boundary Conditions









Head-on

Contribution passive safety

Contribution active safety













**Pedestrians** 













Side













Rear-end



20



110







Large animals











### Speed as the regulator for interactions in urban areas





ps/1ijGRpgVz9Zxuyij7























Dr Lars Ekman

Lars.Ekman@trafikverket.se







# VISION ZERO ACADEMY

STRIVING
FOR EXCELLENCE IN
TRANSPORT
SAFETY



# Results – Safety Benefits of Implemented Measures Matteo Rizzi, STA

with the contribution of Anna Vadeby, Senior Researcher in Traffic Safety at VTI Associate Professor at Chalmers University of Technology



### Content

Overview of road safety work in Sweden

- 2+1 roads and speed management
- Overall analysis of car fatalities reduction 2000-2010



## The problem

 1990's: 25% of fatalities and 20% of severely injured occurred on 3,5% of national roads

(3 500 km of total 100 000 km national roads)

13 m wide roads

 Main problem head-on and run-off crashes causing more than 70 % of all fatalities





### The solution: 2+1 roads

 Redesign the same road to a 2+1 road with medium barrier

First 2+1 road in 1998



## Speed on 2+1

- Mean speed (cars) increased ~2 km/h at speed limit 90 km/h
- Floating car studies confirm a good level-of-service at high traffic flows, up to 1300-1400 veh/h in one direction
- Capacity estimated to be 1600 1700 veh/h in one direction during a 15 minute period





# Traffic safety effects (2009)

- Fatalities decreased by 77 %
- Fatalities and seriously injured decreased by 51 % (110 km/h) and 63 % (90 km/h)
- All injury crashes no major changes





# Share of fatally and severely injured car occupants in injury crashes in Sweden





## Road safety improvements during 2000-2010

The proportion of traffic flow on roads with median barrier increased from 26% to 41%





Road side barriers have been installed and the road side area has been cleared from fixed objects



Audio Tactile Lane Markings (ATLM) have been milled in the middle of the road on 4 000 km of rural roads

# In urban areas roundabouts have replaced intersection with transversally moving vehicles



# Percentage of vehicle mileage with Electronic Stability Control, Seat Belt Reminders and 5 stars NCAP (crashworthiness)



### Road traffic fatalities in Sweden





## Fatality addressed by median barrier

2000



2010





## Fatality addressed by roundabout

2000



2010





### Not addressed: local intervention by removing one single tree

2000



2010



#### Most effective interventions between 2000 and 2010

|                              | Number of saved |     |
|------------------------------|-----------------|-----|
|                              | lives           | %   |
| Median barrier               | 65              | 20% |
| Car crashworthiness          | 39              | 12% |
| Electronic Stability Control | 22              | 7%  |
| Side barrier                 | 18              | 5%  |
| Seat Belt Reminders          | 6               | 2%  |
| Roundabouts                  | 7               | 2%  |
| Roadside                     | 2               | 1%  |
| Rumble strips                | 3               | 1%  |
| Total calculated reduction   | 162             | 49% |
| Actual reduction             | 176             | 53% |



### **Summary**

- 2+1 roads are a successful measure to increase safety on rural roads
- Fatalities were reduced by approximately 50% between 2000 and 2010 with road, vehicle and speed interventions
- It takes time to achieve the full benefits of vehicle safety technologies



Matts-Åke Belin PhD Director Vision Zero Academy Adj. Professor Royal Institute of Technology (KTH)

matts-ake.belin@trafikverket.se











### Vision Zero a policy innovation

- Ethical imperative that it can never be ethically acceptable that people are killed or seriously injured when moving within the road transport system
- A safe philosophy based on the overall aim to control for harmful energy
- System perspective were humans (biological, psychological and social capabilities) are put at the center (People will make mistakes. Plan, design and maintain a system for people rather than the other way around)
- Working methods and processes which includes the whole society, research, business, industry, public stakeholders and non governmental organizations. (Not only a matter for public authorities)
- A chain of responsibility which starts and ends with all professional organizations which
  have a stake in the function, design and the use of the road transport system



### Vision Zero change also the way we do things



### Vision Zero - strong focus on changing organizations behavior





## Governance strategies to influence different stakeholders



## Management by objectives



## Road traffic fatalities in Sweden and target for 2030







| Road Safety Performance Indicator |                                                 | Starting point | 2019                   | National target<br>2020 |
|-----------------------------------|-------------------------------------------------|----------------|------------------------|-------------------------|
| 1 a.                              | Speed, state road network                       | 43 %           | • 47 %                 | 80 %                    |
| 1 b.                              | Speed, state road network, average travel speed | 82 km/h        | • 78,1 km/h            | 77 km/h                 |
| 2.                                | Speed, municipal road network                   | 64 % (2012)    | <ul><li>65 %</li></ul> | 80 %                    |
| 3.                                | Sober traffic                                   | 99,71 %        | 99,75 %                | 99,90 %                 |
| 4.                                | Use of seatbelt                                 | 96 %           | <b>■</b> 98,4 %        | 99 %                    |
| 5 a.                              | Use of cycle helmets                            | 27 %           | • 47 %                 | 70 %                    |
| 5 b.                              | Use of moped helmets                            | 96 %           | 93 %                   | 99 %                    |
| 6.                                | Safe passengers cars                            | 20 %           | <b>1</b> 79 %          | 80 %                    |
| 7.                                | Increase in regulatory compliance motorcycle    | _              | _                      | Target not set          |
| 8.                                | Safe state roads                                | 50 %           | <b>80</b> %            | 90 %                    |
| 9.                                | Safe pedestrian & bicycle crossings             | 19 %           | <b>28</b> %            | 35 %                    |
| 10.                               | Maintenance of cycle paths                      | 18 %           | • 19 %                 | 70 %                    |
| 11.                               | Systematic road safety work, ISO 39001          | _              | _                      | Target not set          |
|                                   | Number of fatalities                            | 440            | <b>221</b>             | 220                     |
|                                   | Number of severe injuries                       | 5 400          | ■ 3 800                | 4 100                   |

- In line
- Not in line



Alco lock (%) Regulation vs Public Procurement in fleets









#### Network collaboration

Volvo Cars and the Swedish National Road Administration in joint offensive against traffic accidents

|  |  |  | 16852 |
|--|--|--|-------|
|  |  |  |       |



Volvo Car Corporation and the Swedish National Road Administration will work together to avoid or lessen the effects of road accidents. This is the thrust of the declaration of intent that Volvo Cars' President and CEO Fredrik Arp and the Swedish National Road Administration's Director General Ingemar Skogö signed at the start of the traffic safety seminar today in Tylösand.

The Swedish National Road Administration has worked on its Vision Zero approach since 1997, while Volvo Car Corporation presented a vision in 2007 whose aim is to design cars that do not crash. In the shorter term, this means that by the year 2020, nobody should be injured or killed in a Volvo.

Related Images

#### Media Contacts

#### Per-Åke Fröberg

Director Volvo Cars Heritage Volvo Car Group Phone: +46 31 3257654 per-ake.troberg@volvocars.com



#### Dissemination of scientific results and consumer information





### ESC new cars fitment rate 2009





Research program on policy and implementation – how to make things happen and get organizations to contribute to a safe system







# VISION ZERO ACADEMY

STRIVING
FOR EXCELLENCE IN
TRANSPORT
SAFETY



## Evidence based approach - the need of data

Kenneth Svensson Special adviser traffic safety Swedish Transport Administration



## **STRADA**

Swedish
TRaffic
Accident
Data
Acquisition





## Police report



## Hospital report



## Coverage, from Police and Hospital







# Police, severe injuries





### Hospital Seriously injured



STRADA Uttagswebb

Inloggad som Tomas Fredlund

Aterstående tid: 29 minuter
Hjälp Logga ut





## In-depth studies of fatal accidents

In Sweden all fatalities in road traffic undergo an in-depth study by accident investigators at the Swedish Transport Administration.





## What is an in-depth study?

Detailed investigation into each fatal road accident with the main objective to identify what caused the fatal injuries

Routine since 1997 and is regulated in the government's instruction to the Transport administration

Accident investigators gather information on each fatal accident





## Three questions to be answered

- What happened?
- Why did it happen?
- What can be done to ensure that it does not happen again?







## Road Safety Performance Indicators

# Input Output Outcome

Finance/budgets

Structure/culture

Etc.

Measures

- Alcohol interlocks in fleet
- Median barriers

Road safety performance indicators

- Drink driving: proportion of sober drivers in traffic
- Safe roads: proportion of traffic volume on roads with median barriers
- Seat belt use: proportion of occupants using seat belt

• ..

Consequences

Number of fatalities and serious injuries





#### Long-term goal

Zero deaths and serious injuries by 2050



#### Interim targets

50% fewer deaths and serious injuries between 2020 and 2030



#### Intermediate outcome targets

based on Key Performance Indicators directly linked to reducing deaths and injuries



## Key Performance Indicators EU

| Indicator            | Proposed definition                                                                                     |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------|--|--|
| 1. Speed             | Speed Percentage of vehicles traveling within the speed limit.                                          |  |  |
| 2. Safety belt       | Percentage of occupants using the safety belt and percentage of children using a child restraint system |  |  |
| 3. Helmet            | Percentage of motorcyclists, moped riders and cyclists wearing a protective helmet.                     |  |  |
| 4. Alcohol and drugs | Percentage of drivers, riders and cyclists without alcohol or drugs impairing driving.                  |  |  |
| 5. Distraction       | Driver distraction indicator.                                                                           |  |  |
| 6. Vehicle fleet     | Vehicle fleet safety indicator.                                                                         |  |  |
| 7. Infrastructure    | Road infrastructure safety indicator.                                                                   |  |  |
| 8. Post-crash care   | Post-crash care performance indicator.                                                                  |  |  |



# Controlling of harmful energy







## When data is missing

Even if there is a lack of data it is possible to work proactively with traffic safety if the work is based on the principles of Vision Zero



## Thank you for listening!

Kenneth Svensson

kenneth.svensson@trafikverket.se

+46 10 123 5988



Matts-Åke Belin PhD Director Vision Zero Academy Adj. Professor Royal Institute of Technology (KTH)

matts-ake.belin@trafikverket.se











Table 1: Leading causes of death, all ages, 2016

| Rank | Cause                                   | % of total deaths |
|------|-----------------------------------------|-------------------|
|      | All Causes                              |                   |
| 1    | Ischaemic heart disease                 | 16.6              |
| 2    | Stroke                                  | 10.2              |
| 3    | Chronic obstructive pulmonary disease   | 5.4               |
| 4    | Lower respiratory infections            | 5.2               |
| 5    | Alzheimer's disease and other dementias | 3.5               |
| 6    | Trachea, bronchus, lung cancers         | 3.0               |
| 7    | Diabetes mellitus                       | 2.8               |
| 8    | Road traffic injuries                   | 2.5               |
| 9    | Diarrhoeal diseases                     | 2.4               |
| 10   | Tuberculosis                            | 2.3               |

2016 WHO Global Health Estimates

8<sup>th</sup>

leading cause of death for people of all ages

#1

cause of death for children and young adults aged 5-29 years

Global Status Report on Road Safety 2018, World Health Organization



## There are signs of progress



18.2

rate of death per 100 000 has stabilized but the number of people and motor vehicles has increased.

Global Status Report on Road Safety 2018, World Health Organization



## Number of deaths per 100 000 inhabitants



Global Status Report on Road Safety 2018, World Health Organization



#### Year 2004 – Road Traffic Injuries on the UN Agenda





Events

Networks Funding opportunities

Decade of Action

Privacy

D WHO 2021





#### SUSTAINABLE GOALS



#### Stockholm Declaration

Third Global Ministerial Conference on Road Safety; Achieving Global Goals 2030 Stockholm, 19-20 February 2020

We, Mainters and Heals of Delegations as well as representatives of intensional, regional and sub-regional governmental and compovernmental organizations and the private sector gathered in Stockholm, Sweden, on 19 and 20 February 2020 for the Third Global Ministerial Conference on Road Sufery.

#### Russia 2009



#### Brazil 2015



#### Sweden 2020







Distr.: General 2 September 2020

Seventy-fourth session Agenda item 12 Improving global road safety

- need to promote an integrated approach to road safety such as a safe system approach and Vision Zero...strengthen national intersectoral collaboration, including engagement with non-governmental organizations and civil society and academia, as well as businesses and industry
- Proclaims the period 2021–2030 as the Second Decade of Action for Road Safety, with a goal of reducing road traffic deaths and injuries by at least 50 per cent from 2021 to 2030
- Calls upon businesses and industries of all sizes and sectors to contribute to the attainment of the road safety-related Sustainable Development Goals, including by applying safe system principles to their entire value chain...
- Encourages Member States and **private sector** entities that have not yet done so to establish an effective mechanism to reduce the number of crashes, road traffic fatalities and injuries caused by professional drivers, including drivers of commercial vehicles, owing to job-specific hazards...
- Decides to convene a high-level meeting of the General Assembly, no later than the end of 2022, on improving global road safety with a view to addressing gaps and challenges as well as mobilizing political leadership and promoting multisectoral and multi-stakeholder collaboration in this regard



#### 14 SDG goals (17 goals) are definitely interrelated by sound road safety work – Vision Zero approach

