Contents

Acknowledgments

1. **INTRODUCTION**
 - 1.1. Integrating Safety into Road Design ... 2
 - 1.2. Safe System Guiding Principles to Safer Design .. 4
 - 1.3. The Role of Road Design Guides ... 5
 - 1.4. About This Guide ... 7

2. **KEY ROAD DESIGN PRINCIPLES IN THE CONTEXT OF SAFE PLANNING** 11
 - 2.1. General Road Design Principles ... 11
 - 2.2. Road Function and Land Use .. 13
 - 2.3. Vehicle and Road User Type in LMIC Context ... 17
 - 2.4. Context Sensitive Design .. 21
 - Design Exceptions .. 22
 - Design for road user characteristics and compliance ... 24
 - Complete streets .. 24
 - 2.5. Community Engagement ... 26
 - 2.6. Innovation .. 30

3. **KEY ROAD DESIGN ASPECTS IN THE CONTEXT OF SAFE ENGINEERING** 34
 - 3.1. Design speed and operating speed ... 34
 - General description ... 34
 - Safety implications .. 35
 - Good design practice/treatments/solutions .. 35
 - Further Reading .. 35
 - 3.2. Speed Management and Traffic Calming .. 36
 - General description ... 36
 - Safety implication .. 37
 - Good design practice/treatments/solutions .. 38
 - Further Reading .. 42
 - 3.3. Sight distance .. 42
 - General description ... 42
 - Safety Implication .. 45
 - Good design practice/treatments/solutions .. 45
 - Further Reading .. 46
 - 3.4. Linear Settlements ... 47
 - General description ... 47

Further Reading
Safety implications .. 47
Good design practice/treatments/solutions ... 48
Further Reading ... 51
3.5. Access Control ... 52
General description ... 52
Safety implications ... 52
Good design practice/treatments/solutions ... 53
3.6. Construction, Operation, and Maintenance ... 54
General description ... 54
Safety implications ... 56
Good design practice/treatments/solutions ... 57
Further Reading ... 59

4. VULNERABLE ROAD USER INFRASTRUCTURE DESIGN ... 60

4.1. Pedestrian Facilities Design—Footpaths .. 62
General description ... 62
Good design practice/treatments/solutions ... 62
4.2. Pedestrian Facilities Design—Crossings .. 66
General description ... 66
Good design practice/treatments/solutions ... 67
Case Study .. 70
4.3. Cyclist Facilities Design .. 71
General description ... 71
Good design practice/treatments/solutions ... 72
General Cycle Case Study/Example .. 77
Further Reading ... 78
4.4. Motorcyclist Facilities Design .. 78
General description ... 78
Safety implications ... 79
Good design practice/treatments/solutions ... 80
Case Study .. 84
Further Reading ... 85
4.5. Public Transport—Bus Stops; Bus Rapid Transport and Other Modes 86
General description ... 86
Safety implications ... 87
Good design practice/treatments/solutions ... 88
Further Reading ... 91

5. CROSS SECTION AND ALIGNMENT .. 92

5.1. Road Width ... 93
General description ... 93
Safety implications ... 93
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.</td>
<td>Shoulder Width and Type</td>
<td>97</td>
</tr>
<tr>
<td>5.3.</td>
<td>Horizontal Curvature</td>
<td>101</td>
</tr>
<tr>
<td>5.4.</td>
<td>Superelevation and Cross Slope (also referred to as “camber” or “crossfall”)</td>
<td>109</td>
</tr>
<tr>
<td>5.5.</td>
<td>Vertical Curvature and Gradient</td>
<td>113</td>
</tr>
<tr>
<td>5.6.</td>
<td>Passing Lanes</td>
<td>119</td>
</tr>
<tr>
<td>5.7.</td>
<td>Roadsides—Forgiving Roadsides and Clear Zones</td>
<td>124</td>
</tr>
<tr>
<td>5.8.</td>
<td>Barriers</td>
<td>131</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>5.9. Medians</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>General description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety implications</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Good design practice/treatments/solutions</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Further Reading</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Case Studies/ Examples</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>5.10. Road Surfacing</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>General description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety implications</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Good design practice/treatments/solutions</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Further Reading</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>5.11. Drainage</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>General description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety implications</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Good design practice/treatments/solutions</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Case Study</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Further Reading</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>5.12. Curbs</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>General description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety implications</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>Good design practice/treatments/solutions</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Further Reading</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>5.13. Road Signs</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>General description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety implications</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Good design practice/treatments/solutions</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Further Reading</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>5.14. Line Marking</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>General description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety implications</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Good design practice/treatments/solutions</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>Further Reading</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>5.15. Street Lighting</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>General description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety implications</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Good design practice/treatments/solutions</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>Further Reading</td>
<td>173</td>
<td></td>
</tr>
</tbody>
</table>
6. INTERSECTIONS

6.7. Acceleration and Deceleration Lanes
- General description
- Safety implications
- Good design practice/treatments/solutions
- Further Reading
- Case Studies/Examples

6.6. Left-in Left-out/Right-in Right-out
- General description
- Safety implication
- Good design practice/treatments/solutions
- Further Reading

6.5. Channelization (including turn/slip lanes)
- General description
- Safety implication
- Good design practice/treatments/solutions
- Further Reading

6.4. Raised Intersections
- General description
- Safety implication
- Good design practice/treatments/solutions
- Further Reading

6.3. Roundabouts
- General description
- Safety implications
- Good design practice/treatments/solutions
- Further Reading

6.2. Signalized Intersections
- General description
- Safety implications
- Good design practice/treatments/solutions
- Further Reading
- Case Studies/Examples

6.1. Uncontrolled and Unsignalized (yield) Intersections
- General description
- Safety implications
- Good design practice/treatments/solutions
- Further Reading
- Case Studies/Examples

Safety implications

Good design practice/treatments/solutions

Further Reading

Case Studies/Examples
Further reading .. 216

6.8. Grade Separation and Ramps .. 216
 General description ... 216
 Safety implications ... 218
 Good design practice/treatments/solutions ... 219
 Further Reading ... 220

6.9. Rail Crossings... 220
 General description ... 220
 Safety implications ... 221
 Good design practice/treatments/solutions ... 222
 Further Reading ... 224

7. DESIGN TOOLS FOR SAFE OUTCOMES ... 225

 7.1. Introduction ... 225

 7.2. Road Infrastructure Safety Performance Indicators ... 226

 7.3. Infrastructure Tools and Techniques ... 228
 Further Reading ... 236

8. KEY REFERENCE DOCUMENTS .. 237

Figures

Figure 2.1: Access and mobility functions for different classes of roads .. 14
Figure 2.2: Sellers on the road in Senegal .. 15
Figure 2.3: Shops taking over the footpath and roadway—Nepal .. 15
Figure 2.4: The road is a meeting place in villages in Armenia ... 15
Figure 2.5: Illustration on movement and place status of roads and streets .. 15
Figure 2.6: A rural highway passing through a market—Chad .. 16
Figure 2.7: Stalls on the road with no separation of through high-speed traffic movements and mixed activity area—Nepal 16
Figure 2.8: Main urban arterial separated from the mixed activity area—Qatar .. 16
Figure 2.9: National road separated from the mixed activity area—Qatar ... 16
Figure 2.10: Different types of vehicles and high pedestrian volume ... 18
Figure 2.11: Different types of vehicles—Vietnam .. 18
Figure 2.12: Four different types of vehicles on highways—India ... 18
Figure 2.13: Different types of vehicles ... 18
Figure 2.14: Mixed vehicle traffic with conflict of different users—Bangkok .. 19
Figure 2.15: Mixed vehicle traffic with conflict of different users—Philippines .. 19
Figure 2.16: Mixed vehicle traffic with conflict of different users .. 19
Figure 2.17: Mixed vehicle traffic with conflict of different users at intersection .. 19
Figure 2.18: Design domain concept ... 22
Figure 2.19: Complete street concept ... 26
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20</td>
<td>Levels of community engagement</td>
<td>27</td>
</tr>
<tr>
<td>2.21</td>
<td>Village settlement along the highway</td>
<td>29</td>
</tr>
<tr>
<td>2.22</td>
<td>Fast-driving buses and overtaking near settlement</td>
<td>29</td>
</tr>
<tr>
<td>2.23</td>
<td>Rumble strips</td>
<td>29</td>
</tr>
<tr>
<td>2.24</td>
<td>Speed hump</td>
<td>29</td>
</tr>
<tr>
<td>2.25</td>
<td>Pedestrian crossing</td>
<td>29</td>
</tr>
<tr>
<td>2.26</td>
<td>Before the HP intersection improvement in March 2017</td>
<td>32</td>
</tr>
<tr>
<td>2.27</td>
<td>Shops taking over the footpath and Temporary low-cost interventions implemented (using paint, chalk, and barricades) during the trial (April 2017)</td>
<td>32</td>
</tr>
<tr>
<td>2.28</td>
<td>The changes were made permanent in December 2018</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Speed/injury risk curves</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Carriageway narrowing, delineators, and speed humps</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Road narrowing with traffic islands and extended curbs</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Rumble strips on highways</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Speed bump placed by community on road passing through village—Ethiopia</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>City street in Colombia with makeshift rumble strip</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Speed feedback sign</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Unmarked (“invisible”) speed hump—Zanzibar</td>
<td>39</td>
</tr>
<tr>
<td>3.9</td>
<td>Marked speed hump for traffic calming</td>
<td>39</td>
</tr>
<tr>
<td>3.10</td>
<td>Raised pedestrian crossing and mini circle</td>
<td>40</td>
</tr>
<tr>
<td>3.11</td>
<td>Use of mixed traffic calming infrastructure—narrowing, speed humps, and delineators</td>
<td>40</td>
</tr>
<tr>
<td>3.12</td>
<td>Children had no safe and dedicated crossing point and very often were in constant conflict with motorists</td>
<td>41</td>
</tr>
<tr>
<td>3.13</td>
<td>School children are protected by an elevated zebra crossing which is a traffic calming feature in itself</td>
<td>41</td>
</tr>
<tr>
<td>3.14</td>
<td>Installing speed table with checker marking. Left: before the intervention; Right: After the intervention</td>
<td>42</td>
</tr>
<tr>
<td>3.15</td>
<td>Example of speed and peripheral vision and speed and focus point</td>
<td>42</td>
</tr>
<tr>
<td>3.16</td>
<td>Stopping sight distance</td>
<td>43</td>
</tr>
<tr>
<td>3.17</td>
<td>Overtaking maneuver and sight distance</td>
<td>43</td>
</tr>
<tr>
<td>3.18</td>
<td>Examples of driver’s sight triangles at intersections</td>
<td>44</td>
</tr>
<tr>
<td>3.19</td>
<td>Illustration of driver’s sight distance at curves</td>
<td>44</td>
</tr>
<tr>
<td>3.20</td>
<td>Correlation between visibility and roadway width and vehicle speeds</td>
<td>45</td>
</tr>
<tr>
<td>3.21</td>
<td>Example of a linear settlement</td>
<td>47</td>
</tr>
<tr>
<td>3.22</td>
<td>No footpath or crossing facility for pedestrians</td>
<td>48</td>
</tr>
<tr>
<td>3.23</td>
<td>Lack of pedestrian crossings</td>
<td>48</td>
</tr>
<tr>
<td>3.24</td>
<td>Pedestrian bridge but not used</td>
<td>48</td>
</tr>
<tr>
<td>3.25</td>
<td>No footpath for pedestrians</td>
<td>48</td>
</tr>
<tr>
<td>3.26</td>
<td>Poorly designed median for no crossing location—Romania</td>
<td>48</td>
</tr>
<tr>
<td>3.27</td>
<td>Hazardous roadside stall</td>
<td>49</td>
</tr>
<tr>
<td>3.28</td>
<td>Separated roadside market space with parking, Dar es Salam corridor between Morogoro and Mafinga, Tanzania</td>
<td>49</td>
</tr>
<tr>
<td>3.29</td>
<td>Examples of bypass roads</td>
<td>49</td>
</tr>
<tr>
<td>3.30</td>
<td>Sketch of road elements within built-up areas</td>
<td>50</td>
</tr>
<tr>
<td>3.31</td>
<td>Service road—India</td>
<td>50</td>
</tr>
<tr>
<td>3.32</td>
<td>Moldova—service road for slow vehicles</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure 3.33: Speed sign and speed hump for gateway treatment—India
Figure 3.34: Gateway treatments in India
Figure 3.35: Mixed gateway treatment—Romania
Figure 3.36: Local traffic not isolated from the expressway
Figure 3.37: Direct access from local road to expressway
Figure 3.38: Lack of pedestrian footpath
Figure 3.39: Opaque apron on footbridge may deter pedestrians from using the facility due to security concerns
Figure 3.40: A median walkway in Lusaka, Zambia
Figure 3.41: Walking and cycling facilities with buffer zone
Figure 3.42: Access management
Figure 3.43: Complete lack of signing and control—Kenya
Figure 3.44: Uncontrolled signing—Romania
Figure 3.45: Well signed and controlled site—Tanzania
Figure 3.46: No provision for pedestrians—Qatar
Figure 3.47: Well signed and guarded work zone—Abu Dhabi
Figure 3.48: Construction work going on without any temporary safety measures—West Bengal
Figure 3.49: Major excavation with no protection or segregation of work zone and general traffic—Kenya
Figure 3.50: Construction with no protection or segregation of work zone and general traffic—Kenya
Figure 3.51: Complete lack of roadworker protective clothing or adequate workzone demarcation
Figure 3.52: Unprotected work areas and materials—India
Figure 3.53: Stacked construction material unprotected or contained along the highway—India
Figure 3.54: Poorly maintained road surface—Romania
Figure 3.55: Well-maintained road with clear road markings—India
Figure 4.1: Separation of a vehicular travel way, cyclist path, and walkway on an urban arterial with concrete paving blocks on walkway and sealed cyclist path
Figure 4.2: No tripping hazards or slipper floors
Figure 4.3: Typical Urban footpath—Ghana
Figure 4.4: Urban footpath with protection from traffic and dangerous slope, Ghana
Figure 4.5: Shared space in urban area
Figure 4.6: Shared space—India
Figure 4.7: Mixed traffic in rural road
Figure 4.8: Obstructed footpath, and lack of drop curb in Manila
Figure 4.9: Well zoned footway with clear pedestrian route and tactile guidance in China
Figure 4.10: Poorly maintained pedestrian guardrail—Maintenance Inspection
Figure 4.11: Unprotected footpath on rural national road
Figure 4.12: Segregated pedestrian/nonmotorized transport facility on rural road
Figure 4.13: Clear urban footway on median—Kenya
Figure 4.14: Lively sidewalk project—transformation from no footpath to protected footpath
Figure 4.15: Grade separated footbridge—Ethiopia
Figure 4.16: Grade separated underpass—US
Figure 4.17: Well designed foot bridge—Shanghai
Figure 4.18: Signalized pedestrian crossing
Figure 4.19: Scramble Intersection
Figure 4.20: Well defined at-grade crossing—Rwanda .. 68
Figure 4.21: Raised crossing to slow approach speeds—Kenya .. 68
Figure 4.22: Well defined crossing with signing—Singapore ... 68
Figure 4.23: Pedestrian refuge alone ... 69
Figure 4.24: Controlled crossing with refuge .. 69
Figure 4.25: Lack of pedestrian space on median—mauritius—safety inspection 69
Figure 4.26: Painted and narrowing approach to crossing ... 69
Figure 4.27: Transformation from no crossings to well defined raised crossing with signing 70
Figure 4.28: Installing pedestrian refuge—Vietnam .. 70
Figure 4.29: Installing raised crossing with signings and protected footpath—Zambia 70
Figure 4.30: Examples of cycle paths .. 71
Figure 4.31: Green Corridor—La Rochelle France ... 72
Figure 4.32: Cyclists using a narrow shoulder—Rwanda .. 73
Figure 4.33: Cyclists on sealed shoulder with overlay to roadway causing level difference—Rwanda .. 73
Figure 4.34: Urban cycle track in China .. 73
Figure 4.35: Cycle track in Beijing, China ... 73
Figure 4.36: On-road segregated cycle path on a highway in Ethiopia .. 73
Figure 4.37: Well designed cycle lane—Shanghai ... 73
Figure 4.38: Shared footway/cycleway Tanzania ... 74
Figure 4.39: Cycle lane separated from main road vehicle traffic—Bucharest, Romania 74
Figure 4.40: Unsuccessful cycle lane separated from vehicle traffic/parking—Bucharest, Romania ... 74
Figure 4.41: Cycle street—UK .. 75
Figure 4.42: Advance cycle stopline (bike box) with contraflow cycle lane 76
Figure 4.43: Right-of-way intersection (for cyclists)—Holland ... 76
Figure 4.44: Roundabout for cyclists—Netherlands .. 77
Figure 4.45: Floating roundabout for cyclists—Netherlands .. 77
Figure 4.46: Bicycle lanes separated from pedestrians ... 77
Figure 4.47: Installing crossings with advance cycle stopline—India .. 78
Figure 4.48: Motorcycle goods transport—Kenya ... 79
Figure 4.49: “Boda Boda” motorcycles Kenya ... 79
Figure 4.50: Motorcyclists at intersection—Thailand ... 82
Figure 4.51: Advance motorcycle stop line .. 82
Figure 4.52: Motorcyclist impact with wire rope barrie ... 83
Figure 4.53: Typical metal barrier ... 83
Figure 4.54: Motorcycle skirt added to metal barrier in Vietnam .. 84
Figure 4.55: Concrete barrier-separated motorcycle lane in Indonesia 84
Figure 4.56: Modified U-shaped posts and attached to a curved concrete barrier 84
Figure 4.57: Exclusive motorcycle lane—Malaysia .. 85
Figure 4.58: Inclusive motorcycle lane—Malaysia ... 85
Figure 4.59: Tram system—Ukraine ... 86
Figure 4.60: BRT Lane—Bolivia .. 86
Figure 4.61: Matatu bus service—Kenya ... 86
Figure 4.62: Rickshaw taxi—India ... 86
Figure 4.63: Dedicated bus lanes for bus rapid transit system ... 89
Figure 4.64: Bus lane and priority signal—UK .. 89
Figure 4.65: Curbside trolleybus stop—Ukraine, with shelter and kiosk .. 90
Figure 4.66: Rural village bus stop—Burundi, no signs or facilities .. 90
Figure 4.67: Bus lay-by—Ghana and Romania, used as a garage facility .. 91
Figure 5.1: Three-dimensional layout combined with horizontal and vertical alignments 92
Figure 5.2: Use of wide lanes in an urban area at the expense of vulnerable users (pedestrians and cyclists) ... 94
Figure 5.3: Appropriate use of wide lanes on freeway ... 94
Figure 5.4: Example of a road diet in Brazil showing reduction in the number of lanes from three each way in 2009 to two each way in 2014, with the addition of a wide median footpath and cycle lanes ... 95
Figure 5.5: Before and after of Joel Carlos Borges Street, São Paulo, Brazil, September 2017 96
Figure 5.6: Paved shoulder .. 98
Figure 5.7: Unpaved gravel shoulder ... 98
Figure 5.8: Partially-paved or composite shoulder .. 98
Figure 5.9: Narrow shoulders resulting in increased risks for cyclists on the travelled way 98
Figure 5.10: Pavement edge drop ... 98
Figure 5.11: Illegally parked trucks on shoulder ... 99
Figure 5.12: 2.5 m shoulder people wrongly using as a traffic lane—Romania .. 99
Figure 5.13: Wide sealed shoulder .. 99
Figure 5.14: Wide, paved shoulder on curve ... 100
Figure 5.15: Paved shoulder with rumble strips used by cyclists .. 100
Figure 5.16: Tree located too close to the carriageway on inside of curve. It obstructs line of sight and is a safety hazard. It also has the potential to push road users toward or even across the centerline at a curve, making it very unsafe .. 102
Figure 5.17: Mountainous curve with tree obstructs where a road crash occurred 102
Figure 5.18: Insufficient delineation at curve .. 103
Figure 5.19: Hazardous combination of horizontal curve at the base of a steep upgrade 103
Figure 5.20: Poor alignment combination showing optical breaks caused by steep sag curves along horizontal tangent .. 103
Figure 5.21: Hazardous combination: crest curve preceding sharp horizontal curve, with intersections and accesses .. 103
Figure 5.22: Example of good combination of horizontal and vertical curvature providing good visibility .. 105
Figure 5.23: Illustration on provision of flexible poles and chevron signs at curves with limited sight distance .. 106
Figure 5.24: Transverse lines at the entrance of curve in China ... 106
Figure 5.25: Chevron alignment signs providing good night-time visibility ... 106
Figure 5.26: Advance curve warning and speed sign .. 106
Figure 5.27: Horizontal curve at the base of a steep downgrade with advance warning sign 107
Figure 5.28: Example of curve improvement in Malaysia .. 107
Figure 5.29: Wide centerline with median rumble strips on curve in Australia 107
Figure 5.30: Safety edge. After installing the safety edge, the unpaved material adjacent to the edge should be graded flush with the top of the pavement .. 107
Figure 5.31: Shoulder rumble strips ... 108
Figure 5.32: Edge line rumble stripes by adding ribs .. 108
Figure 5.33: Edge line rumble stripes by milling of road .. 108
Figure 5.54: Example of a passing lane ... 119
Figure 5.55: Illustration of signing and markings in advance and along a passing section ... 121
Figure 5.56: Example of markings on a climbing lane ... 121
Figure 5.57: Example of advance signing of a climbing lane ... 122
Figure 5.58: Schematic view of 2+1 highway ... 122
Figure 5.59: 2+1 highway with flexible barrier ... 122
Figure 5.60: 2+1 highway with painted median ... 122
Figure 5.61: Romanian National Road 2 (DN2) pilot road upgrade program in 2019 ... 123
Figure 5.62: Unforgiving ditch with hazardous headwall (right) on high-speed road ... 124
Figure 5.63: Widened road but the poles not moved—Philippines ... 124
Figure 5.64: Concrete guideposts ... 125
Figure 5.65: Trees (over 100 mm diameter) located too close to the carriageway ... 125
Figure 5.66: Uncovered drain and unsafe culvert—Romania ... 125
Figure 5.67: Unshielded water body with steep embankment ... 125
Figure 5.68: Unshielded overpass piers ... 125
Figure 5.69: Individual concrete blocks ... 125
Figure 5.70: Rigid mast on shoulder ... 126
Figure 5.72: Example of a clear zone ... 126
Figure 5.71: Stacked materials by the roadside. These are a particular hazard to two or three wheelers especially at night ... 126
Figure 5.73: Traversable culvert end treatment for cross-drainage culverts. Allows vehicles that leave the roadway to drive over them without rolling or experiencing an abrupt change in speed ... 128
Figure 5.74: Lightweight guidepost that is forgiving ... 129
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.75</td>
<td>Slip-base lighting column suitable for high-speed roads with little pedestrian activity and parking</td>
<td>129</td>
</tr>
<tr>
<td>5.76</td>
<td>Impact-absorbing lighting columns suitable for low-speed</td>
<td>129</td>
</tr>
<tr>
<td>5.77</td>
<td>Shielded piers with rigid barriers. An appropriate end treatment (cushions/impact attenuators) should also be applied on barrier systems</td>
<td>129</td>
</tr>
<tr>
<td>5.78</td>
<td>Roadside tree delineated but inconspicuous—Italy</td>
<td>130</td>
</tr>
<tr>
<td>5.79</td>
<td>Illustration on delineation of trees as a last resort treatment. Delineating hazards may be used in combination of other treatments, including reduction in speeds and protection by safety barriers</td>
<td>130</td>
</tr>
<tr>
<td>5.80</td>
<td>Flexible (wire-rope) barrier</td>
<td>131</td>
</tr>
<tr>
<td>5.81</td>
<td>Semi-rigid barrier (W-beam)</td>
<td>131</td>
</tr>
<tr>
<td>5.82</td>
<td>Rigid (F-profile) barrier</td>
<td>131</td>
</tr>
<tr>
<td>5.83</td>
<td>Flexible barriers with too large posts</td>
<td>132</td>
</tr>
<tr>
<td>5.84</td>
<td>The rail units overlap in the wrong way</td>
<td>132</td>
</tr>
<tr>
<td>5.85</td>
<td>Use of nonstandard median type on high-speed road</td>
<td>132</td>
</tr>
<tr>
<td>5.86</td>
<td>Light-gauge rails with concrete curbs</td>
<td>132</td>
</tr>
<tr>
<td>5.87</td>
<td>The exposed end of the guardrail can spear through an impacting vehicle</td>
<td>133</td>
</tr>
<tr>
<td>5.88</td>
<td>Unsafe ramped end of semi-rigid barrier that can launch an impacting vehicle</td>
<td>133</td>
</tr>
<tr>
<td>5.89</td>
<td>Unsafe gap between guardrail and concrete</td>
<td>133</td>
</tr>
<tr>
<td>5.90</td>
<td>Example of a safe flexible barrier with good clearance. Since the deflections on these barriers can be high, it is important that an adequate offset between the barrier and the hazard is provided</td>
<td>134</td>
</tr>
<tr>
<td>5.91</td>
<td>Fully re-directive crash cushion—Philippines</td>
<td>135</td>
</tr>
<tr>
<td>5.92</td>
<td>Fully re-directive terminal, flared or tangential</td>
<td>135</td>
</tr>
<tr>
<td>5.93</td>
<td>Flared energy absorbing terminal</td>
<td>135</td>
</tr>
<tr>
<td>5.94</td>
<td>Safe crash cushion at the end of rigid barrier at a construction site</td>
<td>135</td>
</tr>
<tr>
<td>5.95</td>
<td>Safe connection between guardrail and rigid barrier on bridge with a transition section. Adding extra posts to the guardrail near the rigid barrier helps to create a transition section. The marker also helps in alerting drivers of sudden narrowing of the road ahead</td>
<td>136</td>
</tr>
<tr>
<td>5.96</td>
<td>Flush median</td>
<td>137</td>
</tr>
<tr>
<td>5.97</td>
<td>Flush median with rumble strips</td>
<td>137</td>
</tr>
<tr>
<td>5.98</td>
<td>Median with pavement bars</td>
<td>137</td>
</tr>
<tr>
<td>5.99</td>
<td>Grassed median with curb</td>
<td>137</td>
</tr>
<tr>
<td>5.100</td>
<td>Curbed median</td>
<td>137</td>
</tr>
<tr>
<td>5.101</td>
<td>Painted median on high-speed road</td>
<td>137</td>
</tr>
<tr>
<td>5.102</td>
<td>Semi-rigid median barrier on expressway</td>
<td>138</td>
</tr>
<tr>
<td>5.103</td>
<td>Raised median on dual carriageway</td>
<td>138</td>
</tr>
<tr>
<td>5.104</td>
<td>Full median with no opening</td>
<td>138</td>
</tr>
<tr>
<td>5.105</td>
<td>Median crossover opening, with no left/right turn bay</td>
<td>138</td>
</tr>
<tr>
<td>5.106</td>
<td>Median crossover, opening, with left/right turn bay</td>
<td>138</td>
</tr>
<tr>
<td>5.107</td>
<td>Median crossover, with directional left/right turn bays (prevents crossing)</td>
<td>138</td>
</tr>
<tr>
<td>5.108</td>
<td>U-Turn on narrow median (with waiting lane)</td>
<td>140</td>
</tr>
<tr>
<td>5.109</td>
<td>U-turning vehicle encroaching on road space for approaching traffic</td>
<td>140</td>
</tr>
<tr>
<td>5.110</td>
<td>Vehicles using raised median as lane during congestion</td>
<td>140</td>
</tr>
<tr>
<td>5.111</td>
<td>Illegal U-turn over the median</td>
<td>140</td>
</tr>
<tr>
<td>5.112</td>
<td>Unsafe median opening leading to contraflow</td>
<td>141</td>
</tr>
<tr>
<td>5.113</td>
<td>Use of nonstandard median type and unsafe median opening on a high-speed road</td>
<td>141</td>
</tr>
</tbody>
</table>
Figure 5.114: Raised median with turn lane dedicated for the U-Turn ... 141
Figure 5.115: Raised median on carriageway .. 141
Figure 5.116: Anti-glare barrier on top of median .. 142
Figure 5.117: Narrow unsafe median .. 143
Figure 5.118: Wide median opening with concrete stumps .. 143
Figure 5.119: Median opening for pedestrian use ... 143
Figure 5.120: An asphalt road surface in good condition ... 145
Figure 5.121: Concrete blocks (adoquines) surfacing in good condition and appropriate drainage facilities 145
Figure 5.122: Otta seal surfacing on low volume road in good condition with satisfactory results. (left image: close-up of the otta seal surfacing) .. 145
Figure 5.123: High friction surface treatment on high-risk curve ... 147
Figure 5.124: A high friction surface applied at both approaches of the intersection .. 147
Figure 5.125: High friction surface (colored) applied on the approach to a mini roundabout 147
Figure 5.126: Open channels .. 149
Figure 5.127: Closed drainage filled in with porous materials for anti-erosion and falling, 149
Figure 5.128: Conventional v-shaped drainage ... 149
Figure 5.129: Wide paved shoulder and drainage facility on a downhill slope ... 150
Figure 5.130: Typical culvert headwall to be extended/replaced .. 150
Figure 5.131: Edge of partial pavement overlay causing water to be retained on surface 150
Figure 5.132: Typical extended culvert and revised headwall design ... 152
Figure 5.133: Piped flume .. 152
Figure 5.134: Physical barrier in front of the drain ... 152
Figure 5.135: Poorly drained road with rough driving surface (sediment source) ... 153
Figure 5.136: Poor road location with creek and hydrological connection to streams ... 153
Figure 5.137: Slide material blocking drainage ditches .. 153
Figure 5.138: Hazardous drainage facility on a narrow and hilly road ... 154
Figure 5.139: The combination of roadside accesses and deep opened drainage ditches increase the risk and potential severity of crashes .. 154
Figure 5.140: Parabolic dish drainage (good hydro-dynamics but low capacity) .. 154
Figure 5.141: Earth excavated drainage in Malawi ... 154
Figure 5.142: Unprotected drainage ... 155
Figure 5.143: Armor ditches with vegetation, rock, masonry, or concrete to resist ditch erosion 155
Figure 5.144: Safely widened shoulder and drainage ... 155
Figure 5.145: Armored roadside ditch with graded rock (riprap) for erosion control ... 155
Figure 5.146: Transverse gutter .. 155
Figure 5.147: Concrete vertical curb .. 156
Figure 5.148: Sloping curb providing access to driveway .. 156
Figure 5.149: Hazardous vertical curbs on high-speed road ... 157
Figure 5.150: Example of dangerous curb-barrier combination with the steel barrier just behind the curb 158
Figure 5.151: Very high curb (approx. 250 mm) limiting access by pedestrians to the walkway 158
Figure 5.152: Triple curb in Bucharest, limiting access by pedestrians ... 158
Figure 5.153: Vertical curb adjacent to footpath ... 159
Figure 5.154: Bus-stop curb to ease passenger access .. 159
Figure 5.155: Dropped curb at both ends of pedestrian crossing with tactile paving surface ... 159
Figure 5.156: Dropped curb providing access to property ... 159
Figure 5.157: Sloping curb provided on the median to allow occasional mounting by vehicles on the traffic island as needed, while the vertical curb is provided on the edge of the carriageway to delineate the footpath and discourage mounting by vehicles .. 160
Figure 5.158: Painted curb on median. The curb, however, does not provide access for persons with disabilities at the crossing ... 160
Figure 5.159: Highway advertising—Ukraine ... 164
Figure 5.160: Footway signage—Ghana .. 164
Figure 5.161: Inconsistency of guidance information .. 165
Figure 5.162: Overuse of signs is distracting .. 165
Figure 5.163: Expressway with interchange signs and lighting in Hyderabad, India ... 166
Figure 5.164: Faded pedestrian crossing markings in Cambodia .. 167
Figure 5.165: Unexpected deviation of line marking—India .. 169
Figure 5.166: Line markings illuminated by retroreflecting material .. 169
Figure 5.167: Village lighting—India .. 171
Figure 5.168: Solar powered streetlights, ... 171
Figure 5.169: Slip-base lighting column suitable for high-speed roads with little pedestrian activity and parking .. 172
Figure 5.170: Impact-absorbing lighting columns suitable for low-speed environments with higher pedestrian activity and parking .. 172
Figure 6.1: Uncontrolled Y-intersection in India ... 175
Figure 6.2: Conflict points of different intersection types at single-lane intersections ... 176
Figure 6.3: Yield signs being used as intersection control.. 178
Figure 6.4: Sight triangle obstacles from minor road at T-intersection .. 178
Figure 6.5: Obstacle (bus stop waiting space) at center of intersection in India ... 179
Figure 6.6: Stop signs with traffic calming measures at unsignalized intersection ... 179
Figure 6.7: Left turn restriction by signs and median at unsignalized T-intersection ... 179
Figure 6.8: No left turn sign with stop marking at unsignalized intersection in Dominica ... 180
Figure 6.9: Segregated diverge nearside unsignalized intersection ... 180
Figure 6.10: Island separating traffic at center of minor road ... 181
Figure 6.11: Curb changing angle of entering intersection from minor road ... 181
Figure 6.12: Minor road treatments—traffic calming and warning signs in India from minor road perspective .. 182
Figure 6.13: Minor road treatments—traffic calming and warning signs in India from major road perspective .. 182
Figure 6.14: Installing movement prohibition measures and pedestrian protection measures—Colombia .. 183
Figure 6.15: Convert four-leg intersections to two T-intersections (right-left staggered intersections) .. 184
Figure 6.16: Convert offset T-intersections to four-leg + three-leg intersection (realign intersection approaches to reduce or eliminate intersection skew) .. 184
Figure 6.17: Traffic control signal for vehicles in India .. 185
Figure 6.18: Signal hidden by the branches of a tree in Gurudwara, India; tree/branches must be removed or replace signal .. 186
Figure 6.19: All conflict points at four-leg intersection .. 187
Figure 6.20: Example of conflict points in specific phase at four-leg intersection ... 187
Figure 6.21: Typical Signal Cycle for above stages .. 188
Figure 6.22: Intersection where signals are not functional in India ... 189
Figure 6.61: No marking slip lane in Tanzania ...189
Figure 6.60: Angle of slip lane transformed from wide (left picture) to tight (right picture) ...189
Figure 6.62: Poor delineated slip lane in Ghana ..189

Figure 6.59: Shadowing effects (dynamic visual obstruction)—a large vehicle in the slip lane hiding a vehicle in the through lane ..190
Figure 6.58: Marked intersection with artistic design to attract more driver's attention ...190
Figure 6.57: Colored, raised intersection with line markings ..190
Figure 6.56: Low cost marked intersection ..190
Figure 6.55: Truck tilting warning signs with advisory speed ..190
Figure 6.54: Warning signs with a recommended advisory speed190
Figure 6.53: Raised intersection with crossing sign ..190
Figure 6.52: Raised intersection with stop sign ..190
Figure 6.51: Segregating conflict points in stages ..190
Figure 6.50: Raised intersection with different pavement pattern190
Figure 6.49: Raised intersection with colored pavement ..190
Figure 6.48: Raised intersection in Bogotá to give priority to pedestrians on an arterial street ..190
Figure 6.47: Example of mini-roundabout with reflection in Italy190
Figure 6.46: Example of low-cost roundabout in Argentine ..190
Figure 6.45: Transformation from uncontrolled intersection to roundabout—The Philippines ...190
Figure 6.44: Roundabout with tram rails in Poland ..190
Figure 6.43: Roundabout which allows larger vehicles to mount part of central island (same conditions of mini-roundabouts applied) ..190
Figure 6.42: Good quality roundabout sign but variation of sign in the same country confusing drivers in South Africa ...190
Figure 6.41: Mini-roundabout with noticeable pole—Zagreb, Croatia190
Figure 6.40: Mini-roundabout (Wetherby, England) ..190
Figure 6.39: Decorated roundabout obscuring driver's sight in Bhutan190
Figure 6.38: Truck apron not serving the purpose of design in South Africa (too high apron to ride on for larger trucks and too low to block riding on passenger cars) ..190
Figure 6.37: Truck apron with correct design for use by trucks only with a narrow circular carriage in South Africa ...190
Figure 6.36: Diameter and length adjustment of islands in a roundabout190
Figure 6.35: Inappropriate location and size of roundabout in Bhutan190
Figure 6.34: Roundabout with too small center island in India ..190
Figure 6.33: Decorated roundabout obscuring driver's sight in Bhutan190
Figure 6.32: Vehicle ignoring flat roundabout in Croatia ..190
Figure 6.31: Dangerous roundabout design in Romania, where the main road has no deflection ...190
Figure 6.30: Ordered traffic flow at signalized intersection with reduced conflict points...190
Figure 6.29: Traffic flows at unsignalized intersection without pedestrian crossings in Phnom Penh, Cambodia ...190
Figure 6.28: Pedestrian-cross-assistance devices (signals on cross walk) in Hyderabad, India ...190
Figure 6.27: Pedestrian (hybrid) beacon in US ..190
Figure 6.26: Unsafe manner at stop line (overcrossing stop line) ..190
Figure 6.25: Supplemental signal for intersection in middle of reverse curve190
Figure 6.24: Supplemental signal at horizontal curves ...190
Figure 6.23: Dysfunctional signal in Dwarka, India ..190
Figure 6.64: Large urban intersection with pavement marking delineation for turning movements ... 209
Figure 6.65: Minor road treatment with flexible poles .. 209
Figure 6.67: Wide-angled slip lane with poorly aligned crossings and lack of crossing .. 209
Figure 6.68: A well-designed right turn slip lane at a complex intersection ... 209
Figure 6.63: Slip lane with zigzag pavement marking in Singapore .. 209
Figure 6.66: Pedestrian refuge and cyclist way finding .. 209
Figure 6.70: Transformation to mini plaza in USA .. 210
Figure 6.71: Transformation to street cycle lane in the US .. 210
Figure 6.69: Raised crosswalk on slip lane with ghost island markings and crosswalk signs .. 210
Figure 6.72: Transformation to footpaths in the US .. 210
Figure 6.73: Sketch of change in conflict points with RIRO arrangement .. 211
Figure 6.74: RIRO junction with too close offset right turn in Ukraine .. 212
Figure 6.75: Urban LILO Brunei with insufficient space for safe lane change to offside right turn ... 212
Figure 6.76: Illustration of replaced turning movement at downstream junction .. 213
Figure 6.77: Illustration of acceleration and deceleration lanes ... 214
Figure 6.78: Deceleration lane approach tight exit radius—Brunei .. 214
Figure 6.79: Well defined acceleration lane—Brunei .. 214
Figure 6.80: Offside diverge lane—Brunei—narrow median and lane requiring additional space beyond turn .. 215
Figure 6.81: Additional barrier to offside diverge—Brunei—to control entry and turning area beyond far carriageway for ALL vehicles, adding additional merge after crossing opposing traffic ... 215
Figure 6.82: A simple overpass with no connection between the two routes—Ethiopia ... 216
Figure 6.83: Typical full grade-separated interchange layouts .. 217
Figure 6.84: Typical partial grade-separated interchanges layouts .. 218
Figure 6.85: Rail crossing UK .. 222
Figure 6.87: Rural rail crossing—Zimbabwe (passive) .. 222
Figure 6.86: Automatic signal controlled crossing—Dubai tram .. 222
Figure 6.88: Rural rail crossing—Australia (active) ... 222
Figure 6.89: Visibility zones approaching a passively controlled rail crossing ... 223
Figure 7.1: Road safety techniques for different stages of the road life cycle .. 225
Figure 7.2: Star ratings (referred to in Target 3) can be derived using processes outlined by the International Road Assessment Program ... 228
Figure 7.3: PSI process ... 232
Figure 7.4: Intersection selection options for SR4D ... 233
Figure 7.5: Safe System Assessment Framework matrix .. 234

Tables

Table 1.1: Typical road design risk factors .. 8
Table 6.1: Advantages and disadvantages of different forms of intersections .. 176
Acknowledgments

This report was written by Sudeshna Mitra (GRSF), Blair Turner (GRSF), Leah Watetu Mbugua (GRSF), Kazuyuki Neki (GRSF), K., John Barrell (Independent Consultant), William Wambulwa (former intern, GRSF), and Soames Job (former Head of the GRSF). Special thanks to John Barrell for collating works produced by GRSF staff. A big thanks also to James Hughes, Lead Safety Advisor - Programme and Standards at the New Zealand Transport Agency, and member of the Austroads Road Design Task Force, for his detailed review and comments on road design content within earlier drafts of this guide.

The report has been peer reviewed at various stages by Arnab Bandyopadhyaya, Lead Transport Specialist; Alina Burlacu, Senior Transport Specialist; James Markland, Senior Transport Specialist; Negede Lewi, Senior Transport Specialist; and Tesfamichael Nahusenay, Senior Transport Engineer, and Greg Smith, Global Program Director, iRAP who provided helpful recommendations. Additional comments were received from Said Dahdah, Lead Transport Specialist; Dipan Bose, Sr. Transport Specialist; and Krishnan Srinivasan, Sr. Road Safety Consultant, World Bank.

This report was produced with funding support from the UK Aid under the Multi Donor Trust Fund Phase 3 funded by the Foreign, Commonwealth & Development Office (FCDO) (erstwhile Department for International Development, DFID) and Department for Health and Social Care (DHSC), through the GRSF Comprehensive Road Safety Research Projects to Improve Global Road Safety, managed by Sudeshna Mitra and Natalya Stankevich.
1. INTRODUCTION

1.1. Integrating Safety into Road Design

Road crashes account for an estimated 1.35 million deaths and 50 million injuries worldwide each year, with over 90 percent of the reported deaths occurring in developing countries.\(^1\) Road crashes represent a major burden on health systems and other services, and inflict pain and suffering on communities and individuals. The combined injury and social costs of crashes pose a heavy financial burden on the economy. According to World Bank statistics, in low- and middle-income countries (LMICs) alone, deaths and serious injuries cost economies 1.7 trillion dollars and over 6.5 percent of gross domestic product (GDP).\(^2\) Governments around the world are working to reduce road-related trauma and have agreed to halve the number of deaths occurring on the roads by 2030.\(^3\)

There are known, cost-effective solutions that can be implemented to address this global crisis. The 2030 Agenda for Sustainable Development recognizes that road safety is a prerequisite to ensuring healthy lives, promoting well-being, and making cities inclusive, safe, resilient, and sustainable. The Decade of Action for Road Safety 2011–2020, officially proclaimed by the UN General Assembly in March 2010, had a goal to stabilize and reduce the forecasted level of road traffic deaths around the world. To continue this global focus on improving road safety, the UN General Assembly has adopted a new resolution on global road safety, proclaiming the period 2021–2030 as the Second Decade of Action for Road Safety with the goal to reduce road traffic deaths and injuries by at least 50 percent by 2030.

A substantial reduction in road deaths will only be feasible if concerted efforts are made, following the “Safe System” approach involving all elements of road safety, management, and delivery. This includes all pillars of the Safe System—starting from road safety management, safe roads and roadsides, safe speed, safe vehicles, safe road users, and post-crash care. This guide focuses on elements of safe road and roadside designs for road networks that can provide safe mobility to all road users, as well as complementary changes to improve speeds, vehicle safety, road user behaviors, and post-crash care. A balanced road design must take into account these complementary system elements to maximize safety benefits. The energy carried by a moving object is proportional to the square of its speed. A well-designed “forgiving roadside” ensures that this energy is dispersed in a crash, and as a result, less energy is transferred to the occupants.

Road infrastructure design plays a vital role in road safety outcomes. Safe infrastructure supports other road safety pillars by encouraging appropriate road user behavior (such as appropriate speed and correct lane position) and by providing a forgiving road environment if things go wrong. Poorly designed road infrastructure can give rise to dangerous road user behavior. One of the key realizations of the

3 United Nations General Assembly Resolution A/RES/74/299 on Improving Global Road Safety.
Safe System approach is that drivers make mistakes and will continue to do so, even if we can reduce how often these occur. This road user error has long been recognized as a significant contributor to poor road safety outcomes. However, roads of any given speed can be designed to reduce the likelihood of crashes occurring, and there is very clear evidence that the severity of outcomes when crashes do occur is significantly influenced by the road design.4 Even if a crash still occurs, improved road infrastructure can save many lives and prevent debilitating injuries.

As examples of the significant benefits that can be obtained through the provision of safe road infrastructure, reductions in deaths and serious injury of up to 80 percent are possible by installing appropriate barrier systems and ensuring that these are adequately maintained, while the same benefits can be obtained from installing well designed roundabouts.5

The Safe System approach highlights that a shared response is required to address road safety. This means that road users will continue to take responsibility for their actions, for instance by being alert and compliant with road rules. However, it is also recognized that road managers and designers have a significant responsibility to provide a road system that protects all road users. This can be achieved through appropriate designs of roads.

As an example, if a driver runs off the road and sideswipes a tree at high speed, there is a very high probability of a fatal or serious crash outcome. In this same situation, if road users were protected from the tree by a well designed and installed roadside barrier, the risks to the occupants would be significantly reduced to the extent that it is likely that only minor damage would occur to the car, but that there would be no significant injuries (assuming a reasonably safe and well-maintained vehicle). This is regardless of the cause of the crash: impairment, misjudgment of speed, fatigue, distraction, drugs, or alcohol. The same protection occurs when pedestrians and cyclists are adequately separated from motorized traffic, or when speeds are managed through traffic calming to appropriate levels given the road users present. Similarly, when vehicles travelling in opposing directions at high speeds are separated by barriers, the risk of a head-on crash occurring is greatly reduced. The provision of this safe road infrastructure relies on good decision-making by recognizing key risk factors while planning road infrastructure and incorporating appropriate design elements to address these risks. This also requires an understanding of the key crash types that result in death and serious injury. These crash types include collisions with vulnerable road users (including pedestrians and cyclists); run-off road, head-on, high-angle collisions including right-angle crashes at intersections; and rear-end crashes.

Substantial improvements to road systems are already occurring in many countries. However, efforts to improve the whole system are required, and this will take time and resources. A long-term vision is required to provide improved design to support safe road design and use following safe system principles. Many countries have set a target date of 2050 for an elimination of death and serious injury on the roads (e.g., in Europe6, 7 and Australia8). This will require commitments of key partners involved in decision-making to provide infrastructure that works alongside improvements in vehicle safety as well as other Safe System pillars to produce such outcomes.

1.2. Safe System Guiding Principles to Safer Design

The following Safe System principles are recommended to ensure safety in sustainable road transport system design:

1. Inclusiveness: Road design needs to be for all road users—not only for motorized vehicles. The implication of this is that designers need to cater for the most vulnerable road users present. In doing so, safety will typically be improved for all road users.

2. Road functionality: Roads serve two functions: “access and mobility” or “movement and place.” Roads serve two primary functions or “roles”: to facilitate the movement (mobility) of people and goods and to act as places (access) for people. For safe design the “actual function,” not the “intended function” should be identified. In cases where mono-functionality cannot be realized in the short term, efforts should be made to provide adequate safety through safe speeds, starting with provision for the most vulnerable road users.

3. Clarity: Design should meet road users’ expectations and be free from any surprise to road users. In case of practical limitations, clear delineation (e.g., markings and signs), adequate sight distance (e.g., decision sight distance), and/or speed management should be used to provide safety for all road users. In addition, variations in key design parameters along the road have an impact on traffic flow and safety. Such transitions should be supported by safe speed reductions, for example, traffic calming. This is applicable in case of variation in cross-section design near bridges/ culverts, for roads passing through villages and towns, at-grade crossing facilities for vulnerable road users, and so forth.

4. Homogeneity: Design should limit differences in vehicle speed, direction of travel, mass, and size. The design should ensure that vehicles (road users) travelling at different speeds are not able to interact (e.g., fast moving cars and vulnerable road users); that those travelling in different directions are not able to collide, especially at higher speeds, (for example in head-on conflicts), and that road users of different mass or size do not mix (for instance, trucks and vulnerable road users). Where it is not possible to provide designs that ensure separation, speeds need to be low. The implication of this principle includes that:

 • Design should ensure the safe segregation of vulnerable road users from motorized traffic where operating speeds need to be above 30 kph, i.e., conforming to Safe System speed.
 • Designs should ensure, whenever possible, physical separation between bi-directional traffic in situations where speeds are above human tolerance levels (e.g., 70 kph for motorized vehicles that have modern safety features) and more so when visibility is restricted.

5. Safe Speed: Design should support Safe System speeds. The determinant of “safe design” is the safety of the most vulnerable or least protected road user and their tolerance to impact forces during a collision. This survivability is largely dictated by the impact speed for different road users. Hence, similar to “design vehicle,” the concept of “design road user” should be adopted to ensure safety, especially when considering the speed environment.

6. Forgiving roads and roadsides: Roads and roadsides should be forgiving, i.e., free from hazards. In higher speed environments roads and roadsides should be free from permanent as well as temporarily fixed objects, such as rigid structures, trees, stopped/parked vehicles, etc., and should be protected if vehicle departure is non-recoverable.

7. Minimized exposure: Design needs to minimize exposure to risk for all users. This can be achieved at the planning stage by providing good quality,
safe infrastructure that encourages modal shifts (e.g., from motorcycles to mass transit systems in cities). Exposure to risk can also be managed through the provision of safe infrastructure elements. As an example, intersections can be designed to remove or eliminate exposure by banning turning movements across multiple lanes of traffic.

8. System design: Road design should be done in a way to support other elements of the Safe System. For example, it may be possible to build post-crash response into the design (e.g., providing shoulders to park disabled vehicles or access of emergency vehicles, providing for safe enforcement activity).

1.3. The Role of Road Design Guides

It is vitally important to understand that guidelines provide broad design principles in both urban and rural settings, as well as technical details, but do not provide full details on design for every situation. These principles and technical details need to be adhered to in order to achieve required outcomes, including a provision for safety. However, every solution is a unique combination of standard elements that requires expert knowledge and local understanding to apply correctly. The Australian Guide to Road Design states the following:

“Every road project is a unique undertaking and can never be precisely repeated. There are no ‘off the shelf’ solutions that will fully address all situations encountered, and the rigid and unthinking application of charts, tables, and figures is unlikely to lead to a successful design outcome. Good design requires creative input based on experience and a sound understanding of the principles. However, every situation is different, and therefore design requirements will also differ.”

This applies to all elements of design, and particularly to safety. The Australian guidance elaborates further on this issue by stating that “designing and constructing roads according to guidelines will not necessarily produce safe outcomes.” Based on the outcomes of design and our knowledge of safety performance, this has unfortunately proven to be true in many situations. Safe road design is not like following a recipe, but rather considerable expertise is required to safely design roads for all road users. Because of the complexities of road design, additional checks and tools have been developed to help identify safety risk, and maximize the safety potential through design. These tools include road safety audit/inspection, road infrastructure safety assessments (including international Road Assessment Program (iRAP)), and a Safe System assessment. In addition, greater attention is being paid to the application of relevant safety metrics in project planning and design. These issues and tools are discussed in chapter 7.

Road design guides have always considered road safety. Issues such as sight distance and design speed dictate much of the design process, and these are based fundamentally on trying to achieve safe outcomes for road users. However, roads are still designed and constructed with inherent risks that result in death and serious injury. This lack of safety may be because there is a “trade-off” between safety and efficiency or mobility due to project constraints such as cost, inconsistency in road design, or simply lack of consideration for vulnerable road users, especially in LMICs (see section 2.3 for a discussion on differing vehicle and road user types in this context). However, in many countries this outcome is no longer seen as acceptable. It is no longer acceptable to design or upgrade roads with inherent safety flaws that carry with them unacceptable levels of risk of death or serious injury. We must ensure that designs follow Safe System principles, and as far as practical eliminate death and serious injury.

Safety-related design information often falls into

the later stages of design guidance documents. For example, decisions about what type of intersection design to use or availability of a right-of-way are made at the start of the design process. Road designers may either have limited ability to alter this decision, or feel like they cannot. They do their best to design the safest version of what they have been asked to produce. However, there are significant safety implications based on this earlier decision-making process. As an example, roundabouts in higher speed environments typically have much better safety performance than traffic signals. This highlights that planning and policy decisions often have a big impact on design choices and outcomes. However, it also highlights the need for designers to understand the implications of design decisions, and to challenge these decisions where better outcomes are possible.

Knowledge is also improving on safe road design, with new solutions emerging on a regular basis, and in some cases, the basic road design tenets are evolving. As one example, the knowledge base on intersection design is changing, with improved design options such as using platforms to raise intersections to help manage speeds and improve safety (see section 6.4). Because of this evolving knowledge, guidance needs to be continually updated. It is important to understand that guidance updates often take many years, and so current editions of design guides and national standards do not necessarily reflect up-to-date good practices. As an example, globally, the vast majority of existing design guides do not yet reflect the new thinking relating to roadside safety. This guide aims to be as up to date as possible at the time of preparation.

Guidance produced for and in LMICs is often adapted from high-income country’s (HICs) best practices. This is because HICs were often the first to produce such guidance, and much of the underlying research on design has been conducted in these countries. In some cases, attempts have been made to reflect local conditions when translating these guides to LMIC use. However, there are significant gaps in knowledge on some issues relating to the design and use of roads in LMICs. As one obvious example, the traffic mix is often quite different, perhaps involving a much higher proportion of motorcycles and other vulnerable road users, and a mix of slower-moving vehicles. Even if the design standards do reflect good practice, they are often applied to the upgrading of existing roads, which can bring challenges. This may lead to the adoption of deviations from design standards to avoid land acquisition or retain an existing alignment; any deviation from the standards should be accompanied by measures to mitigate resulting safety hazards, although this is not always the case (see section 2.4). Similarly, there are often deficiencies in vehicle standards and maintenance. There is also sometimes different unsafe road user behaviors due to lack of enforcement of otherwise common traffic laws and lack of infrastructure. Because of these gaps, there may be deficiencies in the design advice that aligns with the road environment of an LMIC and its users. This may require greater understanding and a need to develop the content of current guidance. This needs to occur in a structured, evidence-based manner (see section 2.6).

In summary, road design guides are technically sound, but they may not meet all objectives around informing designers how to deliver the unique combination of elements in road design and road safety solutions. Most of the constraints identified above are recognized and often documented in the design guides themselves. However, these constraints are often overlooked by practitioners, leading to stringent application without reference to the local context (an issue discussed further in section 2.4). In many instances, this also leads to poor road safety outcomes. Because of the complexities of road design, additional tools have been developed to help identify safety risk and maximize the safety potential through design (see chapter 7). This guide has been designed to address these gaps, including highlighting the safety-related issues that need to be considered when designing roads, as well as the tools and approaches that are needed to ensure safety.
1.4. About This Guide

This guide has been produced by the Global Road Safety Facility (GRSF), which is hosted by the World Bank. A summary of the GRSF program is contained in box 1.1. This document has primarily been produced for those working in the development and implementation of road improvements and safety features in LMICs, although information will also be of interest to those working in HICs. It provides direct guidance on safety-related issues for designs in both urban and rural settings based on experience and a knowledge of LMIC activity from around the world. Thus, this guide should be used by task team leaders of the World Bank and other Multilateral Development Banks (MDBs) to inform LMIC clients on safety issues in design, as well road designers and practitioners involved in road development projects, researchers and academics. The list of common risk factors provided here can be the starting point, and respective design elements should be carefully followed to incorporate safety into road design.

The guide will also be useful for those who want to embed good practice and address safety in their design. Therefore, the information in this guide will be relevant to those working on World Bank–funded projects, but also client countries as well as others involved in road-related activity. It should be used in tandem with local design guidance, and may be useful to draw attention in identifying where safety challenges may arise in a design or simply help identify gaps in the existing guidance. From that perspective, it may also be useful to those in LMICs who are about to update local guidance, or who are trying to adapt guidance from other countries to local conditions.

This guide does not provide detailed information on how to design. The information in this guide will not allow a designer to design a roundabout, a roadside barrier, or a high-speed rural curve. This document does provide external references for this type of advice. Rather, the document will help identify safety-related issues that need attention through design of a roundabout, a roadside barrier, or a high-speed rural curve or similar facilities. It also provides information on tools that should be used as part of the design process to ensure that safety is embedded within projects and policies.

It is not intended that the document will be read from cover to cover, but more that it will be used as a reference for all aspects of the design process to ensure that the safety of road users is at the forefront of design considerations. Suitable dimensions for specific treatments will also rely on appropriate local standards—which may need to be revised to provide adequate safety benefits.

Chapter 2 of this guide addresses some broad road design principles that relate to achieving safe road outcomes. The main content of this report falls within chapters 2 to 6. Within each chapter, various design issues are presented. A description is provided for each of these along with evidence-based information on safety-related issues. Solutions that are applicable in LMICs are provided, along with case studies illustrating these issues and solutions and key references for further reading. Chapter 2 focuses on planning and design, while chapter 4 focuses on vulnerable road user design, including for pedestrians, cyclists, and motorcyclists. Chapter 5 assesses designs related to cross section and alignment, and chapter 6 provides this information for intersections. Chapter 7 provides information on some design-related tools to help achieve safe outcomes.

Chapters 4 to 6 cover the design aspects of various user groups and infrastructure elements. The research cited throughout the sections is primarily based on work in HICs. Where available, specific LMIC research has been cited. However, it must be emphasized that the safety impact of many design features has not been validated in LMICs. It is hoped that this would encourage individual countries and organizations working in LMICs to develop this validation for specific situations, otherwise the same assumptions on untested transferability of measures will continue.
As noted in section 1.1, the provision of this safe road infrastructure relies on good decision-making by recognizing key risk factors while planning road infrastructure and incorporating appropriate design elements to address these risks. To provide a guidance, key risk factors related to road design for each road type are identified in Table 1.1. It is expected that careful considerations will be given while planning and designing infrastructure in such a road environment. These risk factors are further discussed along with their solutions in later sections, as indicated in the table.

Table 1.1: Typical road design risk factors

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Motorways</th>
<th>High-speed inter-urban roads</th>
<th>Urban, residential, and village roads</th>
<th>Go to section:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inadequate sight distance or line of sight is obstructed with unplanned roadside construction</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3.3: Sight distance</td>
</tr>
<tr>
<td>2. Missing, insufficient, or incorrect safety barrier installations (both roadside and centerline)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>5.8: Barriers</td>
</tr>
<tr>
<td>3. Poor combinations of horizontal and vertical alignment, in particular “hidden dips”</td>
<td>X</td>
<td>X</td>
<td></td>
<td>5.3: Horizontal curvature, 5.5: Vertical curvature and gradient</td>
</tr>
<tr>
<td>4. Presence of rigid objects by the roadside posing hazards</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5.7: Roadsides</td>
</tr>
<tr>
<td>5. Insufficient drainage leading to water logging or deep open drainage ditches posing risk</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5.11: Drainage</td>
</tr>
<tr>
<td>6. Cross-section with wide, hard shoulders which are (wrongly) regularly used for overtaking</td>
<td>X</td>
<td></td>
<td></td>
<td>5.2: Shoulder width and type</td>
</tr>
<tr>
<td>7. Inconsistent radius sequence of consecutive curves, e.g., sharp curve after a sequence of significantly more gentle curves, erroneous compound curves with high variability of ratio of the radius, broken back curves, etc.</td>
<td>X</td>
<td></td>
<td></td>
<td>5.3: Horizontal curvature</td>
</tr>
<tr>
<td>8. Unsafe routing and insufficient protection of pedestrians, cyclists, and motorcyclists along the road and intersections, including missing/insufficiently separated pedestrian and cyclist facilities from high-speed traffic and missing/insufficient crossing facilities</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4: Vulnerable Road User Infrastructure Design</td>
</tr>
<tr>
<td>9. Inadequate skid resistance</td>
<td>X</td>
<td>X</td>
<td></td>
<td>5.10: Road surfacing</td>
</tr>
<tr>
<td>10. Lack of climbing lanes in steep upward grades on two-lane roads</td>
<td>X</td>
<td></td>
<td></td>
<td>5.6: Passing lanes</td>
</tr>
<tr>
<td>11. Insufficient superelevation on bends leading to high risk of lateral shift or overturning</td>
<td>X</td>
<td>X</td>
<td></td>
<td>5.4: Superelevation and cross slope</td>
</tr>
<tr>
<td>12. Lack of strong and stable verges</td>
<td>X</td>
<td></td>
<td></td>
<td>5.2: Shoulder width and type</td>
</tr>
<tr>
<td>13. Signal controls that do not consider the needs of all road users, including excessive delays for pedestrians and cyclists</td>
<td>X</td>
<td>X</td>
<td></td>
<td>6.2: Signalized intersections</td>
</tr>
<tr>
<td></td>
<td>Lack of protection for left-turning movements in right-driving traffic, and right-turning movements in left-driving traffic</td>
<td></td>
<td></td>
<td>6. Intersections, 5.13. Road signs, 5.14. Line marking</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Inappropriate road widths and cross-sections in built-up areas, e.g., wide road/lane widths at the expense of facilities for vulnerable road users</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>16.</td>
<td>Narrow lanes on high-speed roads, curves, and turning lanes</td>
<td>X</td>
<td>X</td>
<td>5.1: Road width</td>
</tr>
<tr>
<td>17.</td>
<td>Inappropriate parking and loading facilities</td>
<td>X</td>
<td>X</td>
<td>5.7: Roadsides</td>
</tr>
<tr>
<td>18.</td>
<td>Missing/ineffective traffic calming measures</td>
<td>X</td>
<td>X</td>
<td>3.2: Speed management and traffic calming</td>
</tr>
<tr>
<td>19.</td>
<td>Lack of visual contact between motorists and pedestrians/cyclists</td>
<td></td>
<td>X</td>
<td>3.3: Sight distance</td>
</tr>
<tr>
<td>20.</td>
<td>Poor recognition of intersections and rights of way due to a lack of guiding features, e.g., channelization, markings, and signs</td>
<td></td>
<td>X</td>
<td>6.5: Channelization, 5.13: Road signs, 5.14: Line marking</td>
</tr>
<tr>
<td>21.</td>
<td>Inadequate signage and pavement markings</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
The World Bank has the twin goals of ending extreme poverty and promoting shared prosperity. As part of these overarching objectives, World Bank is working to promote sustainable mobility around the world. Under the combined effects of globalization, population growth, rapid urbanization, economic development, and technological progress, country needs are growing exponentially, making sustainable transport a vital part of the global development agenda. Improvements in road safety are a core part of delivering sustainable transport solutions. The World Bank and GRSF recognize the significant impacts of road crash fatalities and injuries on economic growth for LMICs and the role of crashes in driving families into poverty resulting from the loss of the family income earner due to a fatality or disability. Thus, road crashes directly impact the World Bank's twin goals.

GRSF has been hosted at the World Bank since its inception in 2006 and has the objective of helping to address the growing crisis of road crash deaths and injuries in LMICs. GRSF delivers funding and knowledge development through research, knowledge transfer, advocacy, and technical assistance to scale up and improve road safety delivery in LMICs.

Road safety is embedded in World Bank activity as part of the Environmental and Social Framework (ESF) through the Environmental and Social Standard 4 (ESS4). The ESF, which took effect in October 2018, requires that road safety is considered in projects and addressed wherever it is relevant. A Good Practice Note has been prepared to guide the implementation of the road safety requirements of the ESF. The requirements now include a road safety indicator for relevant projects to monitor the road safety components of projects. GRSF has developed the Road Safety Screening and Appraisal Tool (RSSAT) (also see section 7.3) that allows assessment of the road safety impacts of planned projects early in project development. This allows for refinement of projects to improve road safety delivery before the project is well advanced and road safety interventions are more challenging to include. The Transport Global Practice has implemented a policy requiring the use of RSSAT on roads and urban mobility projects, including the attainment of minimum safety standards. GRSF is planning to develop RSSAT as a web-based tool and share it publicly, please refer to the GRSF website (https://www.roadsafetyfacility.org/).

In addition, GRSF has been promoting good practice in design through training in LMICs and embeds this good practice in projects around the world. Furthermore, GRSF has partnered with iRAP to develop the Star Rating for Designs tool, which is available for use at no charge. This tool was developed to enable a star rating to be easily incorporated into the road design process. Further details on these tools and ways that they can be used to embed road safety into design can be found in chapter 7.